14 research outputs found

    Proteobacteria from the human skin microbiota: Species-level diversity and hypotheses

    Get PDF
    The human skin microbiota is quantitatively dominated by Gram-positive bacteria, detected by both culture and metagenomics. However, metagenomics revealed a huge variety of Gram-negative taxa generally considered from environmental origin. For species affiliation of bacteria in skin microbiota, clones of 16S rRNA gene and colonies growing on diverse culture media were analyzed. Species-level identification was achieved for 81% of both clones and colonies. Fifty species distributed in 26 genera were identified by culture, mostly belonging to Actinobacteria and Firmicutes, while 45 species-level operational taxonomic units distributed in 30 genera were detected by sequencing, with a high diversity of Proteobacteria. This mixed approach allowed the detection of 100% of the genera forming the known core skin Gram-negative microbiota and 43% of the known diversity of Gram-negative genera in human skin. The orphan genera represented 50% of the current skin pan-microbiota. Improved culture conditions allowed the isolation of Roseomonas mucosa, Aurantimonas altamirensis and Agrobacterium tumefaciens strains from healthy skin. For proteobacterial species previously described in the environment, we proposed the existence of skin-specific ecotypes, which might play a role in the fine-tuning of skin homeostasis and opportunistic infections but also act as a shuttle between environmental and human microbial communities. Therefore, skin-associated proteobacteria deserve to be considered in the One-Health concept connecting human health to the health of animals and the environment

    Long-Range Enhancer Associated with Chromatin Looping Allows AP-1 Regulation of the Peptidylarginine Deiminase 3 Gene in Differentiated Keratinocyte

    Get PDF
    Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease

    Renouncing care in French Guiana: the national health barometer survey

    No full text
    Abstract Background In French Guiana, health inequalities are patent for a broad range of pathologies for all age groups. The objective of the present study was to quantify the proportion of the population that had renounced care in the past year, to study predictive factors, and to compare results with other French territories. Methods A two-stage random sample of 2015 individuals aged 15 to 75 years was surveyed by telephone. A descriptive analysis of variables relative to renouncing care, use of health care, screening, and vaccination was initially performed. Multivariate analysis was then used to determine variables associated with renouncing care for financial reasons and renouncing for reasons linked to time were directly estimated using a Poisson model on weighted data. Variables with a significance level < 0.2 in the bivariate analysis were included in the full multivariate model. Results In French Guiana, during the past 12 months, 30.9% of surveyed persons renounced care whatever the type for financial reasons. Results of the multivariate analysis showed that gender, perceived financial situation, perceived health and complementary insurance status were independent predictive factors of care renouncement for financial reasons. Overall, 24% of the surveyed population declared having renounced to care for time-related motives. The independent predictors for time-related renouncing were different than those for renouncing care for financial reasons: a higher education level and a poor perceived health were independently associated with time-related renouncement; retired persons and students were found to renounce care less frequently than persons with a job. Conclusions Renouncing for financial reasons, a major target of the 2016 health law, represented a public health problem in French Guiana. Renouncing for lack of time was an important motive for renouncing, which is aggravated by the insufficient number of health professionals, but may benefit from organizational solutions. There are avenues for improvement of health for the most vulnerable: promote health, act on risk factors, and facilitate the readability and accessibility of the health system. Recent reforms to stabilize health insurance may however have some adverse consequences for migrants

    DNA photoproducts released by repair in biological fluids as biomarkers of the genotoxicity of UV radiation

    No full text
    International audienceUV-induced formation of photoproducts in DNA is a major initiating event of skin cancer. Consequently, many analytical tools have been developed for their quantification in DNA. In the present work, we extended our previous liquid chromatography-mass spectrometry method to the quantification of the short DNA fragments containing photoproducts that are released from cells by the repair machinery. We designed a robust protocol including a solid phase extraction step (SPE), an enzymatic treatment aimed at releasing individual photoproducts, and a liquid chromatography method combining on-line SPE and ultra-high performance liquid chromatography for optimal specificity and sensitivity. We also added relevant internal standards for a better accuracy. The method was validated for linearity, repeatability and reproducibility. The limits of detection and quantification were found to be in the fmol range. The proof of concept of the use of excreted DNA repair products as biomarkers of the genotoxicity of UV was obtained first in in vitro studies using cultured HaCat cells and ex-vivo on human skin explants. Further evidence were obtained from the detection of pyrimidine dimers in the urine of human volunteers collected after recreational exposure in summer

    DNA photoproducts released by repair in biological fluids as biomarkers of the genotoxicity of UV radiation

    No full text
    International audienceUV-induced formation of photoproducts in DNA is a major initiating event of skin cancer. Consequently, many analytical tools have been developed for their quantification in DNA. In the present work, we extended our previous liquid chromatography-mass spectrometry method to the quantification of the short DNA fragments containing photoproducts that are released from cells by the repair machinery. We designed a robust protocol including a solid phase extraction step (SPE), an enzymatic treatment aimed at releasing individual photoproducts, and a liquid chromatography method combining on-line SPE and ultra-high performance liquid chromatography for optimal specificity and sensitivity. We also added relevant internal standards for a better accuracy. The method was validated for linearity, repeatability and reproducibility. The limits of detection and quantification were found to be in the fmol range. The proof of concept of the use of excreted DNA repair products as biomarkers of the genotoxicity of UV was obtained first in in vitro studies using cultured HaCat cells and ex-vivo on human skin explants. Further evidence were obtained from the detection of pyrimidine dimers in the urine of human volunteers collected after recreational exposure in summer

    Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles

    No full text
    In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and ÎČ-naphthoflavone (ÎČNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients

    Identification of lipids of the stratum corneum by high performance thin layer chromatography and mass spectrometry

    No full text
    International audienceThe stratum corneum, the outermost layer of the epidermis, is the most important skin barrier against exogenous physical and chemical effects, in addition to protecting against dehydration. Ceramides are integral parts of the intercellular lipid lamellae of the stratum corneum and play an important role in the barrier function of mammalian skin. Ceramides are sphingolipids consisting of sphingoid bases linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine, sphingosine, phytosphingosine, and 6-hydroxysphingosine, and the fatty acid acyl chains are composed of non-hydroxy fatty acid, alpha-hydroxy fatty acid, omega-hydroxy fatty acid, and esterified omega-hydroxy fatty acid. Analytical methods, such as gas chromatography/mass spectrometry, high performance thin layer chromatography with UV detection, and liquid chromatography/mass spectrometry, have been developed for the identification and quantification of ceramides in the stratum corneum. However, only a few publications relate to the mass fragmentation patterns specific to ceramide types to determine the structure of skin ceramides. Moreover, these studies provide very limited structural information and only for some ceramides. Therefore, the aim of our study was to develop a quick and easy method of quantification of ceramides, cholesterol, and free fatty acids by high performance thin layer chromatography with ultraviolet detection. High performance thin layer chromatography with ultraviolet detection was also coupled with mass spectrometry using negative ionization by electrospray and tandem mass spectrometry (MS/MS) for identification of ceramides' structure

    Nuclear and Urinary Measurements Show the Efficacy of Sun-Protection Factor 50+ Sunscreen against DNA Photoproducts upon Real-Life Recreational Exposure

    No full text
    Sunscreens have been shown to protect against UVR-induced DNA damage in human skin under laboratory conditions. We presently extended these observations to real-life conditions in volunteers after their ordinary exposure habits during summer holidays. Volunteers were randomly assigned to a control group and an educated group supplied with a SPF !50 sunscreen and receiving instructions for use. A questionnaire was used to determine the extent of exposure. No difference in average solar UVR exposure was found between the two groups. DNA photoprotection was first assessed by, to our knowledge, a previously unreported noninvasive assay on the basis of the quantification of pyrimidine dimers released by DNA repair in urine. Damage was also quantified in the nuclear DNA extracted from the roof of suction blisters collected after recreational exposure. The urinary concentration of photoproducts was significantly higher in the control than in the educated group. The same trend was observed for the level of photoproducts in the DNA from suction blisters. The unambiguous observation of an efficient photoprotection against DNA damage afforded by sunscreen under real-life conditions provides strong support for the efficiency of the sunscreens. In addition, the results validate the use of urinary DNA photoproducts as a noninvasive assay applicable to photoprotection

    Safety assessment of cosmetics by read across applied to metabolomics data of in vitro skin and liver models

    No full text
    International audienceAs a result of the cosmetics testing ban, safety evaluations of cosmetics ingredients must now be conducted using animal-free methods. A common approach is read across, which is mainly based on structural similarities but can also be conducted using biological endpoints. Here, metabolomics was used to assess biological effects to enable a read across between a candidate cosmetic ingredient, DIV665, only studied using in vitro assays, and a structurally similar reference compound, PA102, previously investigated using traditional in vivo toxicity methods. The (1) cutaneous distribution after topical application, (2) skin metabolism, (3) liver metabolism and (4) effect on the intracellular metabolomic profiles of in vitro skin and hepatic models, SkinEthicÂźRHE model and HepaRGÂź cells were investigated. The compounds exhibited similar skin penetration and skin and liver metabolism, with small differences attributed to their physicochemical properties. The effects of both compounds on the metabolome of RHE and HepaRGÂź cells were similarly small, both in terms of the metabolites modulated and the magnitude of changes. The patterns of metabolome changes did not fit with any known signature relating to a mode of action known to be linked to liver toxicity e.g. modification of the Krebs cycle, urea synthesis and lipid metabolism, were more reflective of transient adaptive responses. Overall, these studies indicate that PA102 is biologically similar to DIV665, allowing read across of safety endpoints, such as in vivo sub-chronic (but not reproduction toxicity) studies, for the former to be applied to DIV665. Based on this, in the absence of animal data (which is prohibited for new chemicals), it could be concluded that DIV665 applied according to the consumer topical use scenario, is similar to PA102, and is predicted to exhibit low local skin and systemic toxicit
    corecore